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Abstract. Some conditions on the characteristic initial data necessary for a solution of 
Einstein’s equations given by a Bondi-Sachs metric to develop into a Kerr solution are 
determined. A special case is exhibited where some data specified on the initial null hyper- 
surface, together with the news functions, determines the parameter values for the resulting 
Kerr solution. 

1. Introduction 

It is widely conjectured (see for example Hawking and Ellis 1973) that uncharged stellar 
bodies of mass greater than twice the mass of the sun will eventually collapse to a black 
hole which is described by a Kerr solution. In this paper some algebraic conditions 
necessary for this to occur are investigated by studying the characteristic initial value 
problem for an isolated body in otherwise empty, asymptotically flat, space-time (Bondi 
et a1 1962, Sachs 1962, van der Burg 1966). It is shown that for a particular Kerr solution 
to develop, as well as the requirement that the news functions vanish after a certain time 
parameter value (which is equivalent to  requiring the body to eventually stop radiating) 
the data which, in the normal initial value problem, could be specified arbitrarily, are 
now determined by the news functions and the parameters describing the Kerr solution. 

In a special case where the news functions take a particular form, it is possible to 
specify two constants on an initial null hypersurface, which, together with the news 
functions, determine the final values of the parameters in the Kerr solution. 

The analysis of the metric and field equations is based on the work of Bondi et a1 
(1962) and Sachs (1962), but the version quoted here follows van der Burg (1966) which is 
briefly summarized in Q 2. In Q 3 the Boyer-Lindquist form for the Kerr metric (Boyer 
and Lindquist 1967) is transformed into the Bondi-Sachs coordinate system and the final 
values for the data variables obtained. These are imposed on the initial data in Q 4 and 
the results of this procedure analysed. Some conclusions are summarized in Q 5 .  

2. The characteristic initial value problem 

The metric used by Sachs (1962) to  describe asymptotically flat space-time, far away 

1 



2 D S Chellone 

from a bounded source, is, in the form given by van der Burg (1966): 

ds2 = (Vr-’e2p-r2e2YU2 cosh26- r2e -27W2~ osh 26-2r2UWsinh 26)du2 

+ 2e2p du dr + 2r2(eZ7U cosh 26 + W sinh 26) du de 

+2r2(e-’Wcosh 26+ U sinh 26) sin 8 du d 4  

- r2(e2? cosh 26 de2 + e- 2 y  cosh 26 sin2 8 d4’ 

+ 2 sinh 26 sin 8 du d4 )  (2.1) 

where the coordinate system is based on a family of null hypersurfaces parameterized 
by xo = U ;  x1 = r is the luminosity distance along the null geodesics generating the 
hypersurfaces and xz = 8 and x3 = 4 label the null geodesics. The functions p, y ,  6, 
U ,  V and W depend on these coordinates. 

The form of the field equations and the method of solution are given in van der Burg 
(1966). In order to obtain explicit solutions, y and 6 are expanded in inverse powers of r 
in the following way, 

y = c ( ~ , e , 4 ) r - ~ + ( C ( ~ , e , 4 ) - - ~ ~ - 3 c d ~ ) r - ~ +  . .  . 
6 = d(u,O, + ) r - 1 + ( H ( u , 8 , 4 ) + i c 2 d - i d 3 ) r - 3 +  . . . 

(2.2) 

(2.3) 

where c, d, C and H are arbitrary functions of their arguments. Four of the field equations 
now enable the leading terms of p, U ,  Vand W to be obtained in terms of c, d, C and H ,  
together with three non-zero constants of r integration, N(u, 0,4), P(u, 8,4)and M(u, 8,4). 
The r -  terms in (2.2) and (2.3) are omitted to  prevent U and Whaving logarithmic terms, 
which would violate the outgoing radiation condition (Bondi et a1 1962). Five other 
field equations determine the U derivatives of M, N, P, C and H ,  leaving one field equa- 
tion which is now trivially satisfied. With derivatives being denoted by the appropriate 
subscript these five equations are : 

M, = - ( c ; + ~ ; ) + ~ [ ( c , + ~ c c o ~  e+d,  cosece),+(c2+2ccot e+d,  cosec8)cot e 
+ (d2 + 2d cot 6 - C, cosec e), cosec e], 

+(cod3 - c3d, + 3cO3d - 3cd,,) cosec 8 

-(cOC~ +dod3 + 3CCo3 + 3dd0,) cosec 8 

CO = +czco + cdd, - $codZ + )cM + $dA - 8 N 2  - N cot 0 - P3 cosec 0) 

H ,  = cc,d - fc2d, + $d2d, + $dM - $CL - 3 P 2  - P cot 8 + N , cosec e) 

(2.4) 
3N0 = -M2-$L3 cosec 8 - ( ~ , ~ , + d ~ d ~ ) - 3 ( ~ ~ ~ ~ + d d ~ ~ ) - 4 ( c ~ , + d d , )  cot 0 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

3p0 = -M3 cosec 8 + ~ L 2 + ( ~ 2 d o - c O d 2 ) + 3 ( c d 0 2 - c o 2 d ) + 4 ( c d o - c o d )  cot 0 

where 

a A = -+cot 8 (d2+2dcot 8-c3cosec0)-cosecO--(c,+2~cot o+d,cosece). (:e 1 84 
Thus the field equations determine the U derivatives of all the functions in the metric 
except those of c and d which are the arbitrary ‘news functions’ for the system. 

A solution to the characteristic initial value problem is given by specifying C,  H ,  N, P 
and M on a null hypersurface and giving c and d as functions of u, 6’ and 4. This treatment 
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can be extended to cover as many coefficients in the expansions of y and 6 as is required. 
The initial values of these coefficients must be specified and then their subsequent 
development is determined. 

3. The Kerr metric 

The Boyer-Lindquist (1967) form of the metric for the Kerr solution is 

ds2 = (1 - 2mip) dU2 + 2 dii d i  + 4mipa sin28 dii d$ - 2a sin28 dF d$ 

-p- l  d82-[(T;2+a2) sin28+2mipa2 sin48] d$' (3.1) 
where p = (i2 +a2 cos28)-'. The coordinates are ii, F, 8 and $, which are not the co- 
ordinates introduced in the previous section, m represents the constant mass of the source 
and ma its constant angular momentum. This metric will now be transformed into the 
Bondi-Sachs form of metric (2.1) with the additional simplifications due to the Kerr 
metric being axially symmetric and non-radiative. These are, respectively, that p, y, 6, 
U, V and Ware independent of r$ and that the news functions co and do vanish. 

As the metric variables in the Bondi-Sachs metric are expanded in inverse powers of 
r, the transformation adopted here will be of the form 

- 1  0 1 
ii = b r + b + r - ' b +  . . . 
J = Kr+p+r - ' p+  . . . 
8 =-; r + i + r - ' g +  . . . 

0 1 

1 

- 1  0 1 
$ = h r+h+r - ' h+  . . . (3.2) 

where all the coefficients are functions of U, 8 and 4. The notation employed here is 
reminiscent of the BMS transformations of the Bondi-Sachs metric (Bondi et a1 1962), 
but the aim here is to transform the metric (3.1) into the form (2.1). 

The mechanism of carrying out the transformation is tedious but not difficult, and 
by calculating each transformed Kerr metric component and identifying it with the 
corresponding component of the axi-symmetric Bondi-Sachs metric with zero news 
functions, results in the transformation being given by 

ii = u+3r-'a2 ~ i n ~ 8 + $ r - ~ a ~  sin28(5 sin28/4- I)+ . . . 
T; = r-4r-'a2 sin28-3r-2ma2 sin28+ . . . 
t7 = 8-+r-2a2 sin ecos 8+r-4g(8, 4)+ . . . 
$ = 4+r -1a+r -3a3(+s in28-+)+r -4h(e ,  #)+ . . . 

4 

4 

and the metric coefficients being 

c = d = N = H = 0, M = m, C = -+ma2 sin28, P = ma sin 8. 

4. Constraints on the initial data 

In this section the constraints on the initial data for a solution given by the Bondi-Sachs 
metric to develop into a Kerr solution are discussed. 
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Suppose the parameters specifying a particular Kerr solution, m and a, are known. 
A first requirement to be satisfied is that after a certain U parameter value, say u F ,  the 
source ceases to radiate, that is, co and do vanish for all U 2 u F .  Suppose further that, 
subject to this requirement, co and do are given as some functions of U ,  8 and 4. Now 
consider the propagation equation for M ,  (2.4), and integrate this from a value of U just 
less than u F ,  say u F -  
hypersurface. By repeating this integration process from hypersurface to hypersurface, 
the value of M on each hypersurface from uF to U, is obtained, and in particular the 
initial value of M is determined. 

Next take the P propagation equation (2.6) and apply the same procedure, taking the 
final value of P to be ma sin 8 (from 3.4) and using the values of M previously obtained to 
approximate the term J:;+ - M ,  cosec 8 .  du, where ui  and ui+ parameterize neigh- 
bouring hypersurfaces. Hence the value of P is obtained initially and on all hypersurfaces 
between U, and u F .  

In a similar manner the initial values of N ,  C and H can be calculated from equations 
(2.5), (2.7) and (2.8) and so the required constraints are that co and do vanish for U 2 uF 
and that the initial values of the data on the U, hypersurface must take the values just 
obtained. 

An alternative approach to this problem is to try to specify some data on the U ,  
hypersurface, which together with co and do ,  determines the m and a parameters in the 
eventual Kerr solution. However there seems no way to achieve this in general, as both 
co and do have arbitrary 8 and Cp dependence which would prevent the final values for 
m and a being constant and which would lead to the initial values of the data having 
angular singularities. In a special case where d = 0 and c = b sin28, where b is an arbi- 
trary function of U, this objective can be achieved to the extent that the otherwise de- 
termined initial values of M and P each have one parameter available to be specified. 
The initial values of C, H and N are again completely determined. 

to u F ,  where M = m. This gives the value for M on the u F -  

In this case (2.4) yields, on integration from U, to uF, 
U F  

m = ( - ) a i  du sin48+6a, sin2B-4a, 

where a, is the initial value of a, so if M I  is given by 

MI = - LF a; du sin48 + 6a, sin28 + k 

where k is a constant available to be specified, then m = k - 4a,. For a physically realistic 
system a, < k/4 and k > 0. 

Equation (2.6) results in Po = 0, so if the initial value of P is given by P, = 1 sin 8, with 
1 a constant to be specified, then a = l/m. The other propagation equations determine the 
initial values of C, H and N ,  which with the choice of data given here, do not possess 
singularities at 0 = 0, TC. 

5. Conclusion 

The constraints on the initial data for a solution corresponding to a Bonai-Sachs metric 
to develop into a particular Kerr solution are found and result in the initial values of 
C, H, N ,  M and P being determined. In addition the news functions must vanish after a 
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given U parameter value. A special case is exhibited where some data can be given on 
the initial hypersurface, which together with a particular form for the news functions 
determines the parameter values for the eventual Kerr solution. 
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